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Received 27 February 1996, in final form 17 June 1996

Abstract. In this paper potential symmetries are sought for the nonlinear diffusion–convection
equationsut = [f (u)ux ]x − [k(u)]x . The functional forms off (u) and k(u) that admit such
symmetries are completely classified.

We consider the nonlinear diffusion–convection equations of the type

∂u

∂t
= ∂

∂x

[
f (u)

∂u

∂x

]
− dk(u)

du

∂u

∂x
(1)

which have a number of applications in the study of porous media [1–4]. There is continuing
interest in finding exact solutions to these equations [5, 6]. A complete classification of the
Lie point symmetries of equation (1) is presented in [7, 8].

Bluman et al [9, 10] introduced a method for finding a new class of symmetries for a
system of partial differential equations (PDEs)1(x, u), in the case that at least one of the
PDEs can be written in conserved form. If we introduce potential variablesv for the PDEs
written in conserved form as further unknown functions, we obtain a systemZ(x, u, v).
Any Lie group of transformations forZ(x, u, v) induces a symmetry for1(x, u). When
at least one of the generators which correspond to the variablesx andu depends explicitly
on the potentialv, then the local symmetry ofZ(x, u, v) induces a non-local symmetry of
1(x, u). These non-local symmetries are calledpotential symmetries.

In the spirit of [8], where a complete group classification of point symmetries admitted
by (1) is presented, we search for potential symmetries of (1). We classify all the functions
f (u) andk(u) that admit such symmetries. Introducing the potentialv, equation (1) can be
written as a system of two PDEs:

vx = u vt = f (u)ux − k(u). (2)

We determine the infinitesimal transformations of the form

x ′ = x + εX(x, t, u, v) + o(ε2)

t ′ = t + εT (x, t, u, v) + o(ε2)

u′ = u + εU(x, t, u, v) + o(ε2)

v′ = v + εV (x, t, u, v) + o(ε2)

(3)
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6952 C Sophocleous

which are admitted by equations (2). These transformations induce potential and point
symmetries for (1) and point symmetries for the integrated form of (1)

vt = f (vx)vxx − k(vx) (4)

whereu = vx .
Equations (2) admit Lie transformations of the form (3) if and only if

0(1) {vx − u} = 0 0(1) {vt − f (u)ux + k(u)} = 0 (5)

where0(1) is the first extended generator of

0 = X
∂

∂x
+ T

∂

∂t
+ U

∂

∂u
+ V

∂

∂v

which is given by the relation

0(1) = 0 + [DxU − (DxX)ux − (DxT )ut ]
∂

∂ux

+ [DtU − (DtX)ux − (DtT )ut ]
∂

∂ut

+[DxV − (DxX)vx − (DxT )vt ]
∂

∂vx

+ [DtV − (DtX)vx − (DtT )vt ]
∂

∂vt

.

HereDx andDt are the total derivatives with respect tox and t , respectively. Eliminating
vx andvt from equations (2), equations (5) take the form

E1(x, t, u, v, ux, ut ) = 0 E2(x, t, u, v, ux, ut ) = 0 (6)

whereE1 andE2 are determined polynomials inux andut . We impose the condition that
equations (6) are identities in six variablesx, t, u, v, ux, ut which are regarded as
independent. These two identities enable the infinitesimal transformations to be derived and
ultimately impose restrictions on the functional forms off, k, X, T , U andV .

Now we can successively calculate thatE1uxux
= −f Tu andE2ut

−E1ux
= 2f (uTv+Tx).

Hence,T = T (t). In fact, it can be shown that when the first equation in (2) is of the form
vx = L(x, t, u, ux) then the generatorT is a function oft only [11]. Calculation ofE2uxux

andE1ux
, respectively, giveXu = Vu = 0. From the first identity in (6) we have

U = −Xvu
2 + (Vv − Xx)u + Vx. (7)

Finally, the coefficient ofux and the term independent ofux in E2 = 0 lead to[
Xvu

2 + (Xx − Vv)u − Vx

] df

du
+ [2Xvu + 2Xx − Tt ] f = 0 (8)

[
Xvu

2 + (Xx − Vv)u − Vx

] dk

du
+ [−Xvu + Vv − Tt ] k

= [
Xvvu

3 + (2Xxv − Vvv)u
2 + (Xxx − 2Vxv)u − Vxx

]
f + Vt − Xtu. (9)

These last two equations enable us to deduce the functional forms off (u) andk(u) and to
derive the generatorsX, T andV . Furthermore, equation (7) provides us with the generator
U . From equation (8), we conclude that the functionf (u) satisfies an ordinary differential
equation (ODE) of the form(

λ1u
2 + λ2u + λ3

) df

du
+ (2λ1u + λ4) f = 0

where theλi are constants. Similarly, as in the case wherek = constant (the nonlinear
diffusion equation) [9,10], it can be shown that equation (1) admits a potential symmetry,
corresponding to the auxiliary system (2), if and only if the functionf (u) is of the form

f (u) = 1

u2 + pu + q
exp

[
r

∫
du

u2 + pu + q

]
(10)
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wherep = λ2/λ1, q = λ3/λ1, andr = (λ4−λ2)/λ1. We also state that (1) admits potential
symmetries whenf = constant. Any other form off (u) which satisfies the above ODE
will induce point symmetries of (1). These symmetries are presented in the appendix. In
addition, from equation (9) we deduce that the functionk(u) satisfies the ODE(

λ1u
2 + λ2u + λ3

) dk

du
+

[
−λ1u − λ2 + 1

2
(λ4 − λ5)

]
k = λ6u + λ7.

Solving the above ODE we obtain

d

du
[I (u)k(u)] =

[
λ6u + λ7

u2 + pu + q

]
I (u)

I (u) =
[

1√
u2 + pu + q

exp

(
s

∫
du

u2 + pu + q

)] (11)

wheres = (λ4 − λ2 − λ5)/(2λ1).
We now employ equations (7)–(11) to derive the desired potential symmetries. We split

the analysis into three cases: (i)f = p/(u+q)2, (ii) f is given by (10) withp2−4q−r2 6= 0
and (iii) f = constant. The form off in case (i) is obtained by settingp2 − 4q − r2 = 0
and the constantsp, q are redefined in (10).

Case (i).f = p/(u + q)2

The functional forms ofk(u) may be found from (11). We only present the forms which
produce potential symmetries. We omit any further calculations, which have been greatly
facilitated by the computer algebraic packageREDUCE [12].

(a) k = r(u + q)m/(u + s)m−1, (q 6= s). From equations (7)–(9) we obtain

T = 2m(q − s)c1t + c2 X = c1((mq − ms − s)x − v) + c3

U = c1(u + q)(u + s) V = c1(qsx + (mq − ms + q)v) + c4.

That is, equation (1) admits the potential symmetry

01 = 2m(q − s)t
∂

∂t
+ ((mq − ms − s)x − v)

∂

∂x
+ (u + q)(u + s)

∂

∂u

+(qsx + (mq − ms + q)v)
∂

∂v
.

(b) k = r(u+q) exp
(
s/(u+q)

)
, (s 6= 0). Here equation (1) admits the potential symmetry

02 = 2st
∂

∂t
+ ((s − q)x − v)

∂

∂x
+ (u + q)2 ∂

∂u
+ (q2x + (q + s)v)

∂

∂v
.

(c) k = r/(u + q). Equation (1) admits the following potential symmetries:

03 = 4rt2 ∂

∂t
− [2pt + (v + qx)2]

∂

∂x
+ 2(u + q)

[
(u + q)(v + qx) + 2rt

] ∂

∂u

+ [
q(v + qx)2 + 4rt (v + qx) + 2pqt

] ∂

∂v

04 = (v + qx)
∂

∂x
− (u + q)2 ∂

∂u
− [q(v + qx) + 2rt ]

∂

∂v
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01∞ = e−rx/p

[
pφ

∂

∂x
− (u + q)(p(u + q)φξ − rφ)

∂

∂u
− pqφ

∂

∂v

]
where in01∞, y = φ(t, ξ), ξ = v + qx is an arbitrary solution of the linear heat equation

p
∂2y

∂ξ2
− ∂y

∂t
= 0. (12)

In addition, equations (2) admit point symmetries which are projected onto point symmetries
of (1) and (4). These symmetries are presented in the appendix.

(d) k = r(u + q). We have the following potential symmetries:

05 = (v + qrt)
∂

∂x
− u(u + q)

∂

∂u
− q(v + qrt)

∂

∂v

06 = 12pqt2 ∂

∂t
+ [

(v + qx)3 + 3q(rt − x)(v + qx)2 + 6(ptv + 3pqrt2)
] ∂

∂x

+3(u + q)
[−u(v + qx)2 + 2q(u + q)(qx2 − rtv − qrtx + xv)

]
+ 4pqt − 2ptu

] ∂

∂u
+ q

[−(v + qx)3 + 3q(x − rt)(v + qx)2

+ 6(ptv + 2pqxt − 3pqrt2)
] ∂

∂v

07 = [
(v + qx)(v − qx) + 2(qrtv + pt + q2rtx)

] ∂

∂x

+2(u + q)
[−uv + q2x − qrt (u + q)

] ∂

∂u

+q
[−(v + qx)(v − qx) + 2(pt − qrtv − q2rtx)

] ∂

∂v

02∞ = φ
∂

∂x
− (u + q)2φξ

∂

∂u
− qφ

∂

∂v

wherey = φ(t, ξ) satisfies (12).

Case (ii).f = (
1/(u2 + pu + q)

)
exp

[
r
∫

du/(u2 + pu + q)
]
, (p2 − 4q − r2 6= 0)

Upon substitution the above form off (u) in equations (8) and (9), we deduce thatX and
V are linear inx andv. In this case we obtain the following results:

(a) k =
√

u2 + pu + q exp
[
s
∫

du/(u2 + pu + q)
]
. Equation (1) admits the potential

symmetry

08 = (r + 2s)t
∂

∂t
+ [(r + s − p/2)x − v]

∂

∂x
+ (u2 + pu + q)

∂

∂u

+[qx + (r + s + p/2)v]
∂

∂v
.
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(b) k = (
1/I (u)

) ∫ [
(λ1u + λ2)/(u

2 + pu + q)
]
I (u) du. Here the functionI (u) is given

by (11). For this case we have

09 = (r + 2s)t
∂

∂t
+ [(r + s − p/2)x + λ1t − v]

∂

∂x
+ (u2 + pu + q)

∂

∂u

+[qx − λ2t + (r + s + p/2)v]
∂

∂v
.

We note that ifλ1 = λ2 = 0 then09 ≡ 08.

(c) k = λ(u + q). Equation (1) admits the following potential symmetries:

010 = (p2 − 4q − r2)t
∂

∂t
− [

(p + r)v + 2qx + λ(r2 + pq + qr + 2q − p2)t
] ∂

∂x

+(p + r)(u2 + pu + q)
∂

∂u
+ [

(p2 + pr − 2q)v + q(p + r)x

+ λq(pr − p + 2q + r2 − r)t
] ∂

∂v

011 = [2v + (p − r)x + λ(2q − p + r)t ]
∂

∂x
− 2(u2 + pu + q)

∂

∂u

− [
(p + r)v + 2qx + λq(p + r − 2)t

] ∂

∂v
.

Case (iii). f = constant = p

From equation (8) we getX = 1
2xTt + θ(t) and from (9) we deduce that the functionk(u)

satisfies an ODE of the form

(λ1u + λ2)
dk

du
+ λ3k = λ4u

2 + λ5u + λ6.

Equation (1) admits a potential symmetry only whenk = r(u+s)2. Any other form ofk(u)

which satisfies the above ODE leads to point symmetries (see appendix). We note that if
k = r(u + s)2 then equation (1) becomes the well known Burgers’ equation which admits
[10] the potential symmetry

03∞ = erv/p(phx + rhu)
∂

∂u
+ perv/ph

∂

∂v

where the functionh(x, t) satisfies the linear PDE

ht − phxx + 2rshx − r2s2

p
h = 0.

As in the case of point symmetries, potential symmetries may be used to derive similarity
transformations (solutions). Such transformations reduce the number of independent
variables of a system of partial differential equations by one. We shall present the similarity
solutions which are obtained using the potential symmetries01 and02.

We consider the point symmetry01 of (2) which is a potential symmetry of (1), with
f (u) = p/(u+ q)2 andk(u) = r(u+ q)m/(u+ s)m−1. The corresponding invariant surface
conditions are

2m(q − s)tut + ((mq − ms − s)x − v)ux = (u + q)(u + s)

2m(q − s)tvt + ((mq − ms − s)x − v)vx = qsx + (mq − ms + q)v
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which admit the following three integrals:

c1 = (v + qx)t−
1
2 c2 = v + sx

q − s
t−(m+1)/2m c3 =

(
u + s

u + q

)
t−1/2m.

From the above relations we derive the similarity solutions

u = qt1/2mF1(η) − s

1 − t1/2mF1(η)
v = −sηt

1
2 + qt(m+1)/2mF2(η) (13)

whereη is the similarity variable defined implicitly by the relation

η = xt−
1
2 + t1/2mF2(η). (14)

Upon substitution of (13) into the system (2) we obtain the system of ordinary differential
equations

dF2

dη
= F1 − η

dF2

dη
+

(
1 + 1

m

)
F2 = 2p

(q − s)2

dF1

dη
− 2rF 1−m

1 (15)

where the independent variableη is defined by relation (14). Employment of the solution
of the system (15), (14) and the first relation in equations (13) will produce a similarity
solution of (1).

In [11] it is pointed out that a wider class of similarity solution may be obtained by
direct introduction of equations (13) in (1). We can therefore substitute the first relation in
equations (13) in (1). In this way, we obtain a relation involvingη, F1, F2, the derivatives
of F1, F2 and t which appears as a parameter. Imposing the condition that this relation
is identically zero for any value of the parametert , will result in the system of ordinary
differential equations

µF ′′
1 + 1

2
ηF ′

1 + (m − 1)rF−m
1 − 1

2m
F1 = 0

µ(2F1 + F ′
2)F

′′
1 − µF ′

1F
′′
2 + 2r(m − 1)F ′

2F
−m
1 + 1

2m
(m + 1)F2F

′
1

3

2m
F1F

′
2

+ηF ′
1F

′
2 + mrF 1−m

1 = 0

µ(2F1 + F ′
2)F1F

′′
1 − µF1F

′
1F

′′
2 + r(m − 1)F ′2

2 F−m
1 + 1

m
(m + 1)F2F

′
2F

′
1

3

2m
F1F

′2
2

+1

2
ηF ′

1F
′2
2 + 2rmF ′

2F
1−m
1 = 0

µF 2
1 F ′

2F
′′
1 − 2µF 2

1 F ′
1F

′′
2 − 1

2m
F1F

′3
2 + 1

2m
(m + 1)F ′

1F2F
′2
2 + mrF ′2

2 F 1−m
1 = 0

whereµ = p/(q −s)2 and the primes indicate derivatives with respect toη. The solution of
the above system, as is pointed out in [11], will also contain the solution of the system (15).

Now we consider the symmetry02. The corresponding invariant surface conditions are

2stut + ((s − q)x − v)ux = (u + q)2

2stvt + ((s − q)x − v)vx = q2x + (q + s)v

which admit the following integrals:

c1 = (v + qx)t−
1
2 c2 = t−

1
2 v − q

2s
(v + qx)t−

1
2 ln t c3 = 2s

u + q
+ ln t.
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From these integrals we obtain the similarity solutions

u + q = 2s

F1(η) − ln t
v = q

2s
ηt

1
2 ln t + t

1
2 F2(η). (16)

where the similarity variable is defined implicitly by the relation

η
(

1 − q

2s
ln t

)
= qxt−

1
2 + F2(η). (17)

Upon substitution of (16) in the system (2) we obtain the system of ordinary differential
equations

2sF ′
2 + qF1 = 2s − ηF ′

2 + F2 + q

s
η = pq

s
F ′

1 − 2rqeF1/2. (18)

Similarly, one can derive the similarity solutions which are produced by the potential
symmetries03–011.

In [10] it is shown that an invertible mapping which transforms a nonlinear PDE into
a linear PDE does not exist if the nonlinear PDE does not admit an infinite-parameter Lie
group of contact transformations. Also such mappings do not exist for a nonlinear system
of PDEs if the system does not admit an infinite-parameter Lie group of transformations.
If such infinite-parameter groups exist then the nonlinear PDE (or the system of nonlinear
PDEs) can be transformed into a linear PDE (or into a system of linear PDEs), provided
that these groups satisfy certain criteria [10].

As we have seen, the auxiliary system of (1), given by equations (2), admits an infinite-
parameter Lie group of point transformations in the cases wheref = p(u + q)−2, k =
r(u + q)−1, (01∞), f = p(u + q)−2, k = r(u + q), (02∞) and f = constant, k =
r(u + s)2, (03∞). Only symmetries01∞ and 03∞ lead to invertible mappings for the
system (2). In turn, these mappings lead to non-invertible mappings of (1).

The procedure for determining such invertible mappings is well explained in [10].
Employing the infinitesimal generator03∞ leads to an invertible mapping that linearizes
equation (2) which in turn leads to the non-invertible Hopf–Cole transformation which
connects the Burgers’s equation with the linear heat equation (12).

The infinite symmetry01∞ leads to the invertible mapping

x ′ = v + qx t ′ = t u′ = 1

r
erx/p v′ = 1

p

erx/p

u + q
(19)

which transforms any solution(u′(x ′, t ′), v′(x ′, t ′)) of the linear system of PDEs

u′
x ′ = v′ u′

t ′ = pv′
x ′ (20)

into a solution(u(x, t), v(x, t)) of the nonlinear system

vx = u vt = − p

(u + q)2
ux + r

u + q
. (21)

In turn this mapping leads to a non-invertible transformation which connects (1) with the
linear heat equation (12) [3, 4].

Appendix

In addition to the point symmetries of equations (2) which induce potential symmetries of
(1), equations (2) admit point symmetries which project to point symmetries of (1). Iff (u)

andk(u) are arbitrary functions, then equations (2) admit the symmetries

X1 = ∂

∂t
X2 = ∂

∂x
X3 = ∂

∂v
.
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Additional symmetries exist depending on the functional forms off and k. These
symmetries appear in table A1.

We state that the symmetries01–011, 01∞–03∞ and X1–X15 constitute the complete
group classification of point symmetries admitted by equation (4).

Table A1. Additional symmetries.

f (u) k(u) Symmetries

Constant r(u + s)m + λ(u + s) X4 = 2(m − 1)t
∂

∂t
+ (m − 1)(x + λt)

∂

∂x
− (u + s)

∂

∂u

+[(m − 2)v + (1 − m)sλt − sx]
∂

∂v

Constant resu + λu X5 = 2st
∂

∂t
+ s(x + λt)

∂

∂x
− ∂

∂u
+ (sv − x + λt)

∂

∂v

Constant r ln(u + s) + λu X6 = 2t
∂

∂t
+ (x + λt)

∂

∂x
+ (u + s)

∂

∂u

+(2v + sx − rt − λst)
∂

∂v

Constant r(u + s) ln(u + s) + λ(u + s) X7 = rt
∂

∂x
+ (u + s)

∂

∂u
+ (v + sx − rst)

∂

∂v

p = constant r(u + s)2 X4, X8 = 2rt
∂

∂x
+ ∂

∂u
+ (x − 2rst)

∂

∂v

X9 = rt2 ∂

∂t
+ rtx

∂

∂x
+ [x/2 − r(u + s)t ]

∂

∂u

+(x2/4 + pt/2 − rstx)
∂

∂v

pequ r(u + s)2 X10 = qt
∂

∂t
+ (qx + 2rt)

∂

∂x
+ ∂

∂u
+ (qv + x − 2rst)

∂

∂v

pequ resu + λu X11 = (q − 2s)t
∂

∂t
+ [(q − s)x − λst ]

∂

∂x
+ ∂

∂u

+[(q − s)v + x − λt ]
∂

∂v

p(u + q)n r(u + q)m + λ(u + q) X12 = (2m − n − 2)t
∂

∂t
+ [λt (m − 1) + (m − n − 1)x]

∂

∂x

−(u + q)
∂

∂u
+ [(m − n − 2)v − qx + λq(1 − m)t ]

∂

∂v

p(u + q)n r(u + q) X12, X13 = n(x − rt)
∂

∂x
+ 2(u + q)

∂

∂u

+[(n + 2)v + 2qx + nrqt ]
∂

∂v

p(u + q)n r(u + q) ln(u + q) + λ(u + q) X14 = nt
∂

∂t
+ (nx + rt)

∂

∂x
+ (u + q)

∂

∂u

+[(n + 1)v + qx − qrt ]
∂

∂v

p(u + q)n r ln(u + q) + λu X15 = (n + 2)t
∂

∂t
+ [(n + 1)x + λt ]

∂

∂x
+ (u + q)

∂

∂u

+[(n + 2)v + qx − (r + λq)t ]
∂

∂v
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